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INTRODUCTION

e (Create a low-cost facial animation system

e We use a non-intrusive, commercially available 3D sensor
(Kinect)

e Markerless approach

e Face tracking algorithm that combines
o Geometry registration
o texture registration
o Pre-recorded animation priors



PRE-REQUISITES

e Blendshape Representation (Morph Target Animation)

(@)

Neutral face is captured

o Set of predefined expressions are captured (morph targets)
o Animation frame 1is a blend of several morph targets
o Represent facial expressions as weighted sum of blendshape meshes

o Can be directly imported into commercial animation tools



PRE-REQUISITES

e Acquisition Hardware

o Kinect system is used
o We capture a 2D color image and a 3D depth map
o Not required to wear any physical markers or makeup



FACTAL EXPRESSTON MODEL

Data Capture

O

O

(@)

Record a predefined sequence of example expressions of the user
To prevent high noise levels, multiple scans over time are used

User is asked to perform slight head rotation while keeping the
expression fixed

This has the additional benefit of alleviating reconstruction bias
introduced by the spatially fixed infrared dot pattern



FACTAL EXPRESSTON MODEL

e Expression Reconstruction

Kinect Raw Images
o Use morphable model to represent different human faces

o A high quality template mesh roughly matching the geometry of the

user’s face is obtained
o Warp this template to each of the recorded expressions

o To improve registration accuracy, we add texture constraints 1in the

mouth and eye regions



FACTAL EXPRESSTON MODEL

e Blendshape Reconstruction
o Represent dynamics of facial expressions using a generic blendshape
rig based on Ekman’s Facial Action coding System (FACS)
o Employ example-based facial rigging:
Given data captured for all expressions and generic blendshape
weights for all expressions
We reconstruct the set of user-specific blendshapes that best

reproduce the example expressions



REALTIME TRACKING

e Rigid Tracking
o Use ICP(Iterative Closest Point) algorithm

o Temporal filter with sliding window for handling h1gh frequency
flickering

e Non-rigid tracking
o We use priors to make sure that the output 1is realistic




STATISTICAL MODEL

e MAP (Maximum a posteriori) estimation

o D = (G,I) : dinput data at current frame i
o G : depth map
o I : color image
o x : most probable blendshape weight
o X_ i n previously constructed priors
x* = argmax p(x|D,X)
x* = argmax p(D|x,X )p(x,X )
x* = argmax p(D|x)p(x,X)

X likelihood prior



(CONCLUSTON

e High-quality performance-driven facial-animation in real
time 1is possible

e Robust real time tracking achieved

e Combining animation priors with effective geometry and
texture registration in a single MAP estimation is key

e Future scope:
o Using real time speech analysis
o Simulation of hair
o Hand gestures



APPENDIX

Prior Distribution. To adequately capture the nonlinear structure
of the dynamic expression space while still enabling realtime per-
formance, we represent the prior term p(x, X,,) as a Mixtures of
Probabilistic Principal Component Analyzers (MPPCA) [Tipping
and Bishop 1999b]. Probabilistic principal component analysis
(PPCA) (see [Tipping and Bishop 1999a]) defines the probabil-
ity density function of some observed data x € R® by assuming
that x is a linear function of a latent variable z € R" with s > t,
i.e.,

x=Cz+pu+e, (6)

where z ~ N(0, ) is distributed according to a unit Gaussian,
C € R**' is the matrix of principal components, x is the mean
vector, and e ~ N'(0, o%I) is a Gaussian-distributed noise variable.
The probability density of x can then be written as

p(x) = N (x|, CCT + o°I). (7

Using this formulation, we define the prior in Equation 5 as a
weighted combination of K Gaussians

K
p(x,Xn) = ZﬂkN'(x, Xk, CrCr + orl). ®)

k=1

with weights 7. This representation can be interpreted as a
reduced-dimension Gaussian mixture model that attempts to model
the high-dimensional animation data with locally linear manifolds
modeled with PPCA.

Likelihood Distribution. By assuming conditional indepen-
dence, we can model the likelihood distribution in Equation 5 as
the product p(D|x) = p(G|x)p(I]|x). The two factors capture the
alignment of the blendshape model with the acquired depth map
and texture image, respectively. We represent the distribution of
each likelihood term as a product of Gaussians, treating each vertex
of the blendshape model independently.

Let V' be the number of vertices in the template mesh and B &
RY*™ the blendshape matrix. Each column of B defines a blend-
shape base mesh such that Bx generates the blendshape represen-
tation of the current pose. We denote with v; = (Bx), the i-th ver-
tex of the reconstructed mesh. The likelihood term p(G/|x) models
a geometric registration in the spirit of non-rigid ICP by assuming
a Gaussian distribution of the per-vertex point-plane distances
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where n; is the surface normal at v;, and v; is the corresponding
closest point in the depth map G.

The likelihood term p(I|x) models texture registration. Since we
acquire the user’s face texture when building the facial expression
model (Figure 3), we can integrate model-based optical flow con-
straints [Decarlo and Metaxas 2000], by formulating the likelihood
function using per-vertex Gaussian distributions as
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where p; is the projection of v; into the image I, VI, is the gradient
of I at pi, and p; is the corresponding point in the rendered texture
image.
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