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Abstract

3D model generation from real world data using scanning systems, such as cheap depth-

sensors has become widely popular in recent times owing to immense utility of such models

in various industries. But such scans are often noisy and incomplete, leading to the fun-

damental problem of registration of a scan to a full body deformable mesh. We wish to

set up a system wherein a subject will be scanned using multiple depth sensors in a room,

and its corresponding body mesh will be generated robustly and correctly. This problem of

registration has been attempted by many, and we spent a major portion of our time studying

their solutions. We were impressed with one particular algorithm of coregistration, which

we have studied in depth. To simulate the lab setup and generate synthetic partial point

cloud data, we have also developed a visualization tool.
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Chapter 1

Introduction

Many graphics applications find use of complete surface model for rendering and anima-

tion. Complete human mesh models are used extensively in industries like gaming, and

film. Medical industry also uses human mesh models for studying and understanding hu-

man anatomy. But obtaining a complete model is difficult. We can scan a person standing

in front of a camera with depth sensor, but such scans will always be partial, since the hu-

man body is opaque. We can mitigate this by taking multiple depth scans from a rotating

camera or several cameras placed around the subject. Since we cannot expect a person to

be absolutely stable during the capture process, the multiple images captured will be noisy.

Extracting a full body complete mesh, from such partial noisy scans is thus not an easy

problem.

This registration problem is a fundamental task, and several approaches have been tried

in the past, a popular one being the Iterative Closest Point Algorithm (ICP)[3], which tries

to align two scans by finding closest corresponding points between them, rigidly trans-

forming the scans to reduce an objective function, and iterating this process till we reach a

terminal condition. Since then, several modifications have been suggested to its correspon-

dence algorithm as well as the objective functions to improve its registration accuracy and

make it more robust. The SCAPE model[2] suggested using a database of pre-registered

scans to train a human shape model that spans variation in both subject pose and shape.
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This model was further modified by the coregistration paper [10], by introducing simulta-

neous model training and scan registration.

Since the literature on this problem is huge, a major portion of our time was spent in

literature survey of several past methods, some of which are summarized in Chapter 2.

In addition to this, we also studied the coregistration[10] paper in-depth (Chapter 3) and

plan to implement it as the starting point of our future work. Obtaining a database of partial

point clouds is tricky, hence we also developed a tool that helps us visualize a mesh, arrange

depth-sensors around it and capture its partial point clouds from various angles. This also

serves as a simulation for the lab that we plan to setup with multiple depth-sensors.
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Chapter 2

Literature Survey

ICP is one of the most common methods for doing alignment. Many variants of ICP have

been tried out in the past. Brown and Rusinkiewicz [7] present a non-rigid alignment algo-

rithm for aligning high resolution range data in the presence of low-frequency deformations

such as those caused by scanner calibration error. Traditional iterative closest points (ICP)

algorithms, which rely on rigid-body alignment, fail in these cases because the error ap-

pears as a non-rigid warp in the data. They use a thin-plate spline to represent the warp,

based on feature correspondences computed using a hierarchical iterative closest points

(ICP) method. Their algorithm combines the robustness and efficiency of ICP with the

expressiveness of thin-plate splines to align high-resolution scanned data accurately. The

principal drawback is that very high resolution data is required for accurate warps. This is

because closest point computations are made only to vertices in the target mesh; if those

vertices are spaced too far apart, the feature correspondence will be skewed. The resulting

warp still provides a good alignment, but is less smooth and warps non-overlapping areas

of the source mesh more than necessary.

Mitra et al. [13] improved upon ICP by developing an objective function that is a

second order approximant to the squared distance between the model and the data. This

incorporates higher order information about the surfaces represented by the point clouds,

such as local curvatures. When the model and data PCD’s are close, their convergence rate
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is similar to ICP; moreover their algorithm has a relatively stable behavior when the initial

displacement is large. Their algorithm mainly improves alignment when the model and the

point cloud are far apart, however this is not beneficial to us since we capture the input

models using our set-up and therefore can place the model and the obtained point clouds

fairly close. Further, they mention the inability of their algorithm to simultaneously register

multiple point clouds, a feature that we require since we are using multiple depth sensors,

and will obtain multiple partial point clouds of the same person.

Another modified version of ICP was developed by J.-D. et al. [11] for registering facial

point data obtained using CT scans of a patient, to provide medical assistance and pre-

operative training. They modified the correspondence search in ICP by proposing the use

of Adaptive Dual Approximate K-D Tree (ADAK-D). Approximate K-D (AK-D) tree was

proposed by Greenspan [8] for the same, but it sometimes produces false nearest neighbor

points since it uses only one projection plane for partitioning a k-dimensional space to build

the node tree. ADAK-D tree uses AK-D tree twice in two different geometrical projection

orders for determining the true nearest neighbor point. They also improved the objective

function of ICP, by modifying the soft-shape-context ICP (SICP) algorithm proposed by

Liu and Chen [12]. In SICP, for each point they generate a bin histogram and a low-pass

filter is used to smooth the neighbor histogram values. Since bin histogram generation

at each point in 3D point data is computationally expensive, they just generate it for the

centroid points of reference and scan data. But since their system uses high quality CT

scan data, they do not have a noise analysis, which would be very significant in our data.

Another variation of ICP proposed by Haehnel et al. [9] focuses on registration of

non-rigid objects. They transform scans into Markov random fields, where nearby mea-

surements are linked by a (nonlinear) potential function. All links are soft, and bending

them incurs penalty. They solve this optimization problem by Taylor series expansion (lin-

earization), and followed by a coarse-to-fine hierarchical optimization technique for carry-

ing out the optimization efficiently. Since human bodies are non-rigid, this seems to be a

good approach, but in recent times, much better and relatively simpler ways of capturing
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the non-rigid aspect of human shape have been developed which use a database of human

shapes to learn such a model.

Most variants of ICP alternate between closest point computations to establish corre-

spondences between two data sets, and solving for the optimal transformation that brings

these correspondences into alignment. A major difficulty for this approach is the sensitivity

to outliers and missing data often observed in 3D scans. Most practical implementations

of the ICP algorithm address this issue with a number of heuristics to prune or reweight

correspondences. Bouaziz et al. [5] propose a new formulation of the ICP algorithm that

avoids these difficulties by formulating the registration optimization using sparsity inducing

norms. They propose a sparse optimization problem that automatically learns the separa-

tion between data and outliers. The major drawback is that this algorithm assumes that the

aligning transformation is rigid.

Vetter et al. [1] show how to extend the ICP framework to nonrigid registration while

retaining the convergence properties of the original algorithm. The resulting optimal step

nonrigid ICP framework allows the use of different regularisations, as long as they have an

adjustable stiffness parameter. They present an algorithm using a locally affine regulari-

sation which assigns an affine transformation to each vertex and minimises the difference

in the transformation of neighboring vertices. They have shown that for this regularisation

the optimal deformation for fixed correspondences and fixed stiffness can be determined

exactly and efficiently.

Pauly et al. [6] introduce 2D and 3D registration algorithms. They formulate regis-

tration as the minimization of an energy, which is the sum of matching energy and prior

energy. They combine 2D image registration and 3D geometry registration to best utilize

the data provided by the RGB-D sensor. The matching energy measures the closeness be-

tween the source image and the target image wrapped onto the deformed grid. Prior energy

is a combination of global and local rigidity prior.

There are also several methods that use a database to learn a human shape model that

spans variation in both subject shape and pose. One such method is introduced by Anguelov
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et al. [2] in their SCAPE paper. The method represents the human shape model such that

it incorporates both articulated and non-rigid deformations. They learn a pose deformation

model that derives the non-rigid surface deformation as a function of the pose of the artic-

ulated skeleton. They also learn a separate model of variation based on body shape. Both

these models together make up the SCAPE model, which can produce 3D surface models

with realistic muscle deformation for different people in different poses, when neither ap-

pear in the training set. They even demonstrate the model’s performance for partial scan

completions, which is in line with what we want to achieve.

The SCAPE model uses as its input, a collection of registered meshes, which it ob-

tains by registering scans using other techniques. Another paper by Hirshberg et al. [10]

removes this dependency by approaching modeling and registration together.This model

serves to regularize how the template mesh can deform, to avoid impossible deformations

of the template. They minimize a single objective function, to reliably obtain high quality

registration of noisy, incomplete scans, while simultaneously learning a highly realistic ar-

ticulated body model. This model greatly improves robustness to noise and missing data.

This model will be a major portion of what we plan to implement in the future, thus we

studied it deeply. It’s further details are mentioned in the below sections.
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Chapter 3

Algorithm : Coregistration

3.1 Model : BlendSCAPE

The SCAPE model defines how to deform a triangulated human-shaped template mesh T ∗

to take on different poses and identities. T ∗ is pre-segmented into parts, connected by a

kinematic tree structure, obtained from the SCAPE dataset. The relative joint angles are

represented as Rodrigues vectors. Lets represent all the relative joint rotations collectively

as θ. R(θ) represents the absolute rotation of triangles in a part, which is found using the

kinematic tree structure. D represents the deformations that transform T ∗ into the shape

of a specific person, and Q(θ) represents the non-rigid deformations of the triangles of T ∗

that capture shape change as a function of pose θ.

In order to deform the template, T ∗ is decomposed into ”un-stitched” triangles, fol-

lowing which we apply pose deformation as a 3 × 3 matrix Rf (θ), a person’s body shape

deformation as 3×3 matrixDf , and finally pose dependent shape changes by a 3×3 matrix

Qf (θ). Here f indexes the un-stitched triangles. Here is the formula:

Tf = Rf (θ)DfQf (θ)T
∗ (3.1)

Following this the edges are stitched back together, as is done in [2]. This however can lead

to folds and creases near joints. For this reason, the BlendSCAPE model is used, where the
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triangle rotations are represented by a linear blend, Bf (θ), given by:

Bf (θ) =
∑
i

wfiR
i (3.2)

where i indexes the parts of the mesh. Bf (θ) andQ(θ), both work simultaneously to reduce

the mesh artifacts. Q is represented as as linear function of the pose vector, given by:

Q(θ) = Q0 +
∑
c

θcQ
c (3.3)

where c indexes the cth element of the pose vector and Qc is the linear coefficient.

3.2 Coregistration

Coregistration aligns a triangulated template mesh to a corpus of 3D scans while simulta-

neously training a BlendSCAPE model. To train the model, we must estimate a pose θs

for each scan in the corpus, a shape Dp for each person in our corpus, and a single linear

pose-dependent deformation modelQ(θ). Before training we initializeD andQ to identity.

At the start, we roughly align the template to the scan, by posing and scaling the untrained

BlendSCAPE model. This can be done using basic ICP or via landmarks.

To fit the deformed template on the surface of scan s, we evaluate the data term ES ,

given by:

ES(T ;S) =
1

aS

∫
xsεS

ρ

(
minxtεT ||xs − xt||

)
(3.4)

where, ρ is the Geman-McClure robust error function ρ(x) = x2

σ2+x2
, S is the scan

surface, aS is the scans surface area, and T is the surface of the aligned template. We

approximate the data error using a fixed set of locations xs, uniformly sampled over the

surface of the scan S.

Next, in a coupling term EC , we penalize the difference between the aligned template

and current model:
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EC(T, θ,D,Q) =
∑
f

af

∣∣∣∣∣
∣∣∣∣∣Tf −Bf (θ)DfQf (θ)T

∗
f

∣∣∣∣∣
∣∣∣∣∣
2

F

(3.5)

where Tf represents the pair of edge vectors of the un-stitched triangle f of T ,Bf (θ)DfQf (θ)T f

is the corresponding un-stitched triangle of M(θ,D,Q), and af is the area of f on the tem-

plate mesh, T . The squared Frobenius norm is used to measure this difference.

Additionally, we use regularization terms to constrain the body shape deformations, D,

and the pose-dependent deformation model, Q. The first term promotes spatial smoothness

of the deformations, D, that map the template mesh to an observed person. The second

term penalizes the magnitude of the effect of the pose-dependent deformation model.

ED(D) =
∑

adjacent faces i,j

ai,j
||Di −Dj||2F

h2ij
(3.6)

EQ(Q) =
∑

faces f

ai,j

(
||Q0

f − I||2F+
∑
c

||Qc
f ||2F

)
(3.7)

where hij is the distance between the centroids of template triangles i and j, af is the

area of triangle f , and aij =
ai+aj

3
is the area of the diamond-shaped region defined by the

centroids of triangles i and j and the endpoints of their shared edge.

Since D and Q are not known, coregistration seeks to align all scans in parallel while

simultaneously solving for D and Q across scans. Summing over all scans and adding the

model regularization yields the following coregistration optimization problem:

(3.8)
min

Tk,θk,DP ,Q

∑
scans k

[ES(T
k;Sk) + λC(EC(T

k, θk, DP , Q))]

+ λC [λD
∑
P

ED(DP ) + λQ(EQ(Q)]

Here p indexes people, k indexes scans, and pk identifies the person in each scan. The

λs control the relative influence of terms. λC is particularly important; it controls how

much the alignments can deviate from the model.
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3.3 Optimization

By fixing Dp, and Q, we can decouple the scans, and we can minimize 3.8, by solving the

following non-linear problem for each scan:

min
Tk,θk

ES(T
k;Sk) + λC(EC(T

k, θk, Dpq , Q)) (3.9)

These sub-problems can be solved using MATLABs lsqnonlin (MathWorks, Natick MA).

If we fix all T k and Q(), minimization with respect to each persons Dp is an indepen-

dent linear least squares problem for each person p. Similarly, with all T k and Dp fixed,

minimization with respect to Qf () is an independent linear least squares problem for each

triangle f .

The paper suggests performing optimization in stages, so as to move from a crude fitting

to tight fitting, by gradually increasing λC .
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Chapter 4

Our Work

We used MPI-FAUST dataset [4] as synthetic data for our models. It contains 200 depth

scans as testing data and 100 depth scans as training data. Initially, we tried out the PCL

library 1 to load a model in PCD (Point Cloud Data) format. We then made filters to create

partial point clouds of the model. We applied the Iterative Closest Point (ICP) algorithm

[3] to register the partial point cloud to the whole model. Figure 4.0.1 shows the template,

the partial point cloud and the aligned point cloud.

We then tried the 2D/3D Registration algorithm [6] using the code provided by them 2.

It performs non-rigid registration of the models. Figure 4.0.2 shows step-wise registration

process of a human.

We created a visualization tool in which we can load any ”.obj” file from the dataset.

We added 4 view-ports through which we can view the loaded model. Figure 4.0.3a shows

the model in our tool. We have added Menu Actions (Figure 4.0.3b) to add features like

loading a new model, saving the partial point clouds, from the 4 view-ports, of the currently

loaded model. We also added an action through which one can view the saved partial point

clouds (Figure 4.0.3d)

1http://pointclouds.org/
2http://lgg.epfl.ch/publications/2014/2d3dRegistration/code.zip
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(a) Template Mesh (b) Partial Point Cloud (c) Aligned Point Cloud

Figure 4.0.1: PCL ICP Alignment

(a) Initial Point Clouds (b) Registration Step

(c) Registration Step (d) Registered Point Cloud

Figure 4.0.2: Registration by Pauly et al. [6]

12



(a) Model 1 (b) Open Action

(c) Model 2 (d) Partial Point Clouds

Figure 4.0.3: Visualization Tool
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Chapter 5

Future Work

Our next step is to implement the coregistration algorithm given by [10] and register the

point clouds generated by our tool. The coregistration algorithm works specifically for the

individuals present in the database. We will try to generalize it further. One method is

to use PCA to learn body models of several individuals using multiple scans of a person.

The current SCAPE [2] model learns a shape space via PCA focusing on single scans of

individuals only.

We are also setting up a room in ViGIL lab with 4 (or possibly more) Kinects with

proper fixed stands. We will take partial scans from the Kinect device and feed them as

inputs to our registration algorithm. Here our main aim will be correctness and robustness

of our system.
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